Monitoring Corrosion in Aquifer Thermal Storage Systems – Dr Oliver Opel, University of Applied Sciences Heide Germany

Nov 7, 2019 | engineering and tech, trending

 Original article reference:

This SciPod is a summary of the paper ‘Monitoring of microbially mediated corrosion and scaling processes using redox potential measurements’ in Bioelectrochemistry 97, 137 144.
https://doi.org/10.1016/j.bioelechem.2013.11.004

About this episode

Corrosion and scaling processes in water heating and cooling systems can create the need for hugely costly repairs. Until now, however, techniques to monitor the extent of the damage they inflict have been severely limited. In a 2013 study, Dr Oliver Opel and his colleagues at Leuphana University of Luenburg in Germany made significant strides towards tackling the issue by devising a method to accurately monitor corrosion and scaling in a large aquifer thermal storage system. Their technique was based on an easily determinable value named the redox potential.
 

 

This work is licensed under a Creative Commons Attribution 4.0 International LicenseCreative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium

or format

Adapt: You can change, and build upon the material for any

purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the

license, and indicate if changes were made.

Related episodes

Dr Rishabh Shetty | A Novel Method for Standardizing Single Molecule Studies

Dr Rishabh Shetty | A Novel Method for Standardizing Single Molecule Studies

Studying single molecules provides researchers with unique insights into biological mechanisms and processes and allows them to visualise microscopic structural and functional differences. However, results can be unpredictable, and investigations are labour-intensive and expensive, often requiring extensive training and highly specialised laboratory equipment. Dr Rishabh Shetty and colleagues at Arizona State University, the California Institute of Technology, and the Massachusetts Institute of Technology, USA, have recently developed a simplified single-molecule assessment technique to overcome these limitations with a view to increasing accessibility and precision in molecular-level research.

Dr Marius Nagy – Dr Naya Nagy | Is a Problem Solvable or Not? Quantum Deciders Outperform Classical Ones

Dr Marius Nagy – Dr Naya Nagy | Is a Problem Solvable or Not? Quantum Deciders Outperform Classical Ones

Today, the success of businesses and technologies relies on their ability to make quick decisions to address complex problems. To make matters more complex, these problems often involve a vast amount of data. Dr Marius Nagy at Prince Mohammad Bin Fahd University, together with Dr Naya Nagy, Imam Abdulrahman Bin Faisal University, investigate the ability of quantum computers to act as an ‘oracle’, and provide quality decisions even after just one invocation. Dr. Nagy and Nagy showed that quantum oracles give richer decision proposals and outperform classical computing oracle versions.

Professor Steven Brams | A Game That Stymies AI

Professor Steven Brams | A Game That Stymies AI

AI appears all-powerful when playing sophisticated games such as Chess and Go against human opponents. Moreover, recent developments in AI have allowed it to summarize bodies of complex text, generate images and even video. These developments come with warnings that AI could replace many jobs, undermine democratic elections or even pose a threat to the existence of humanity. However, AI is largely based on observing and learning patterns; so, what happens when there are no patterns? Professor Steven Brams of New York University and colleagues have analyzed the potential of beating AI when playing a deceptively simple game called Catch-Up, simply by making random moves.

Professor Pei Wang | Defining AI to Ensure Effective Research and Policymaking

Professor Pei Wang | Defining AI to Ensure Effective Research and Policymaking

Artificial intelligence – or AI – is receiving increasing attention for its rapid development and potential to change society. Researchers are working hard to develop its capabilities, while regulators are racing to ensure it is managed and governed properly. But what do we mean by AI, and how can we define such a complex term? In a recent paper, Professor Pei Wang at Temple University argues that the lack of an agreed definition makes it difficult for policymakers to assess what AI will be capable of in the near future, or even which kinds of AI are desirable. To combat this, he discusses what makes a robust definition, and suggests his own.

Increase the impact of your research

• Good science communication helps people make informed decisions and motivates them to take appropriate and affirmative action.

• Good science communication encourages everyday people to be scientifically literate so that they can analyse the integrity and legitimacy of information.

• Good science communication encourages people into STEM-related fields of study and employment.

• Good public science communication fosters a community around research that includes both members of the public, policymakers and scientists.

• In a recent survey, 75% of people suggested they would prefer to listen to an interesting story than read it.

Step 1

Upload your science paper

Step 2

SciPod script written

Step 3

Voice audio recorded

Step 4

SciPod published