Investigating Fructans to Understand How Plants Can Survive Harsh Environments | Dr José Ordaz-Ortiz

Mar 16, 2022 | biology, physical sciences

Original Article Reference

This SciPod is a summary of the paper ‘Localization and composition of Fructans in Stem and Rhizome of Agave Tequilana Weber var. azul’, in Frontiers in Plant Science. doi.org/10.3389/fpls.2020.608850

About this episode

The molecules within plant tissues can tell us about how they can withstand harsh environmental conditions. The Agave tequilana plant, native to Mexico, has a high concentration of fructan molecules throughout its tissues. Alongside his colleagues, Dr José Ordaz-Ortiz at the Center for Research and Advanced Studies of the National Polytechnic Institute in Mexico, combines several powerful analytical techniques to better understand the role that these fructans play in plant biology.

 

 

 

This work is licensed under a Creative Commons Attribution 4.0 International LicenseCreative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium or format

Adapt: You can change, and build upon the material for any purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.

More episodes

Dr Li Lu | An illusion of parallax: explaining a mysterious signal at the edge of the solar system

Dr Li Lu | An illusion of parallax: explaining a mysterious signal at the edge of the solar system

In 2009, astronomers detected a mysterious source of high-energy, chargeless particles, which appeared to originate from the very edge of the solar system. Through fresh analysis, Dr Li Lu and colleagues at the Chinese Academy of Sciences have discovered that this distance may be an illusion, created by an effect relating to the solar wind as viewed by the commonly used parallax method. If correct, the team’s theory suggests that the as-yet enigmatic signal could actually originate from a source just beyond Earth’s atmosphere.

Prof. Hui Tong Chua | How Better Heating Models Could Improve the Sustainability of Outdoor Swimming Pools

Prof. Hui Tong Chua | How Better Heating Models Could Improve the Sustainability of Outdoor Swimming Pools

Outdoor swimming pools are enjoyed by millions of us, but it is often challenging to maintain comfortable temperatures across different climates and weather conditions, which can drastically vary the rate of heat transfer away from the water. Through their research, a team led by Prof. Hui Tong Chua from The University of Western Australia has introduced a new empirical model that can accurately predict this transfer of heat, accounting for weather conditions and the surrounding environment. They hope that their model could improve the efficiency of outdoor pool heating systems, helping them to become more sustainable.

Dr David Anthony Cosandey | Could Centaurus A Contain a Pair of Supermassive Black Holes?

Dr David Anthony Cosandey | Could Centaurus A Contain a Pair of Supermassive Black Holes?

Astronomers know that the nearby Centaurus A galaxy contains a supermassive black hole at its centre, but there are several unusual and mind-boggling features in the detailed picture that was recently made of this galaxy’s core, which have yet to be explained. To understand these anomalies, Dr David Anthony Cosandey, an astrophysicist at the Zurich Higher Education Centre, suggests that the galaxy actually contains a pair of supermassive black holes which will eventually merge into a single object. If his theory is confirmed, Centaurus A could not only host the tightest orbiting pair of these immense objects ever discovered; this pair of giant black holes would also be by far the nearest to us that we know of.

Prof. Andisheh Dadashi | Unraveling the Mysteries of Human Embryo Metabolism: Insights from Computational Models

Prof. Andisheh Dadashi | Unraveling the Mysteries of Human Embryo Metabolism: Insights from Computational Models

Metabolism is the cornerstone of life, orchestrating the myriad chemical reactions that sustain cells, tissues, and organisms. It drives growth, division, energy production, and cellular maintenance. For scientists, understanding metabolism, particularly during the earliest stages of human development, holds the key to uncovering the origins of various diseases and developmental disorders. However, studying metabolism in human embryos presents formidable challenges due to ethical considerations, their tiny size, and the intricate web of metabolic pathways. In a groundbreaking study, researchers Prof. Andisheh Dadashi and Derek Martinez of the University of New Mexico-Valencia leveraged advanced computational models to shed light on the metabolic processes occurring in human embryos during the critical peri-implantation stage.

Increase the impact of your research

• Good science communication helps people make informed decisions and motivates them to take appropriate and affirmative action.
• Good science communication encourages everyday people to be scientifically literate so that they can analyse the integrity and legitimacy of information.
• Good science communication encourages people into STEM-related fields of study and employment.
• Good public science communication fosters a community around research that includes both members of the public, policymakers and scientists.
• In a recent survey, 75% of people suggested they would prefer to listen to an interesting story than read it.

Step 1 Upload your science paper

Step 2 SciPod script written

Step 3 Voice audio recorded

Step 4 SciPod published