Exploring Symbiotic Relationships Using Flow Cytometry – Dr Toshiyuki Takahashi, National Institute of Technology in Miyazaki, Japan

Aug 7, 2020 | biology, trending

Original Article Reference

This SciPod is a summary of the paper ‘Life Cycle Analysis of Endosymbiotic Algae in an Endosymbiotic Situation with Paramecium bursaria Using Capillary Flow Cytometry’ from Energies. https://doi.org/10.3390/en10091413

About this episode

Symbiosis is the interaction between two species that offers benefits to one or both of the organisms involved. One important type of symbiosis that has been instrumental in advancing evolution is endosymbiosis, where one of the organisms lives inside the other. Endosymbiosis has typically been studied using microscopy, but Dr Toshiyuki Takahashi from the National Institute of Technology in Miyazaki, Japan, proposes that a technique called flow cytometry can offer more detailed insights into endosymbiotic relationships and advance our understanding of these important associations.

 

 

 

This work is licensed under a Creative Commons Attribution 4.0 International LicenseCreative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium or format

Adapt: You can change, and build upon the material for any purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Related episodes

Dr. Archana Thakur | A Novel Immunotherapy Approach to Treat Solid Tumors

Dr. Archana Thakur | A Novel Immunotherapy Approach to Treat Solid Tumors

Developing therapies to effectively treat cancerous tumors is challenging, due to the hostility of the tumor microenvironment and the potential to unintentionally damage surrounding tissues. Infusions of immune cells can improve immune function and assist the body in fighting disease, although this approach increases the risk of inducing dangerous inflammatory responses. Dr. Archana Thakur and her colleagues at the Universities of Virginia and Pennsylvania have engineered a pioneering immunotherapy system that precisely targets cancerous cells. This new immunotherapy poses minimal risk of adverse reactions, and can be used against a wide range of tumor types.

Dr. Christopher Buck | Expanding Our Knowledge of Viral Evolution

Dr. Christopher Buck | Expanding Our Knowledge of Viral Evolution

Vitamin D has been studied as a treatment for a large number of diseases and conditions, from cancer to autism to COVID-19. However, its mode of action is not completely understood. Professor Ralf Herwig carries out his research at HG Pharma GmbH (Austria) and Ulster University (UK). His vital work explores the role of vitamin D in the body with a view to unlocking its potential as a treatment for a variety of health conditions involving the immune system.

Dr Katty Kang | Deciphering the Molecular Origins of Brain Disorders

Dr Katty Kang | Deciphering the Molecular Origins of Brain Disorders

During brain development, anomalies may arise which lead to serious conditions such as epilepsy, triggering seizures and requiring lifelong monitoring and medication. However, the underlying causes and the way in which these defects occur are not completely understood. Dr Katty (Jing-Qiong) Kang and colleagues at Vanderbilt University Medical Centre in the USA have conducted extensive research into the molecular mechanisms associated with developmental brain disorders, with a focus on genetic epilepsy. They propose novel therapeutic targets to effectively manage symptoms and improve clinical outcomes by targeting the root cause.

Dr Jay Mellies | Using Hungry Microbes to Devour Plastic Pollution

Dr Jay Mellies | Using Hungry Microbes to Devour Plastic Pollution

Plastic pollution is accelerating the destruction of our planet. Discarded plastic can be found in the remotest areas – from the highest mountain tops to the deepest ocean trenches. As many types of plastic take hundreds of years to break down, finding better solutions to the plastic crisis is vital. In recent research, Dr Jay Mellies from Reed College in Oregon examines the ability of microbes to break down mixed-plastic waste.

Increase the impact of your research

• Good science communication helps people make informed decisions and motivates them to take appropriate and affirmative action.
• Good science communication encourages everyday people to be scientifically literate so that they can analyse the integrity and legitimacy of information.
• Good science communication encourages people into STEM-related fields of study and employment.
• Good public science communication fosters a community around research that includes both members of the public, policymakers and scientists.
• In a recent survey, 75% of people suggested they would prefer to listen to an interesting story than read it.

Step 1 Upload your science paper

Step 2 SciPod script written

Step 3 Voice audio recorded

Step 4 SciPod published