Creating A Circular Economy For Sustainable Metal Manufacturing – Andrew LaTour

Jan 10, 2020 | engineering and tech

About this episode

Facilities for recycling metal parts at the locations they are required would be a major milestone in the global struggle towards sustainable industry. Yet for all its advantages, the innovations required to realise such a goal are a daunting prospect. Now, Andrew LaTour and his colleagues at MolyWorks Materials are bringing the idea one step closer to reality, through the development of their ‘Mobile Foundry’. The company’s work could soon provide a new basis for developing a completely closed-loop economy in areas related to metal manufacturing, potentially slashing the industry’s negative environmental impacts.
 

 

This work is licensed under a Creative Commons Attribution 4.0 International LicenseCreative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium

or format

Adapt: You can change, and build upon the material for any

purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the

license, and indicate if changes were made.

Related episodes

Optimising Lubricant Oils to Boost Engine Efficiency | Ken Hope

Optimising Lubricant Oils to Boost Engine Efficiency | Ken Hope

The engine of a typical passenger vehicle is made up of hundreds of mechanical parts. These parts require lubrication to prevent them from overheating and to keep them working efficiently. Ken Hope and his team at Chevron Phillips Chemical, headquartered in Texas, have analysed the extent to which different types of lubricant oils reduce friction. They then used this data to estimate how an optimised oil mixture can achieve an overall improvement in engine efficiency.

Teaching Algorithms to Caption Ultrasound Images | Dr Mohammad Alsharid

Teaching Algorithms to Caption Ultrasound Images | Dr Mohammad Alsharid

Medical professionals require years of training before they can describe ultrasound images of developing foetuses. Dr Mohammad Alsharid and colleagues from the Institute of Biomedical Engineering and Nuffield Department of Women’s and Reproductive Health at the University of Oxford suggest that this task could one day be carried out by machine learning algorithms. In their latest study, the team showed how neural networks, trained by the expert knowledge of real sonographers, could convert subtle features within the images into accurate, readable captions.

Designing Spacecraft to Explore Extreme Environments Within the Solar System | Dr Jekan Thanga

Designing Spacecraft to Explore Extreme Environments Within the Solar System | Dr Jekan Thanga

In the next few decades, upcoming technological advances will offer unprecedented opportunities to explore the solar system – both with autonomous robots, and through manned missions. Dr Jekan Thanga and the Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory at University of Arizona are at the forefront of efforts to design miniature spacecraft that will allow us to reach these distant worlds, and navigate their rugged, unfamiliar terrains. In the future, his team’s research could pave the way for the establishment of long-term, off-world human settlements, and the discovery of life in extreme, yet potentially habitable environments.

Dr Tai-Cheng Chen – Investigating Thermal Spraying Methods for Preventing Maritime Corrosion

Dr Tai-Cheng Chen – Investigating Thermal Spraying Methods for Preventing Maritime Corrosion

Every year, the combined effects of corrosion and wear cause a huge amount of damage to coastal and offshore machinery, incurring huge costs for repair and maintenance. While there are various types of coating that offer protection from wear and corrosion, the way in which that they are applied can massively impact their effectiveness. Dr Tai-Cheng Chen and his team at the Institute of Nuclear Energy Research, Taiwan, have been analysing these methods, in order to determine the best way to protect maritime infrastructure.

Increase the impact of your research

• Good science communication helps people make informed decisions and motivates them to take appropriate and affirmative action.

• Good science communication encourages everyday people to be scientifically literate so that they can analyse the integrity and legitimacy of information.

• Good science communication encourages people into STEM-related fields of study and employment.

• Good public science communication fosters a community around research that includes both members of the public, policymakers and scientists.

• In a recent survey, 75% of people suggested they would prefer to listen to an interesting story than read it.

Step 1

Upload your science paper

Step 2

SciPod script written

Step 3

Voice audio recorded

Step 4

SciPod published