An Enzyme for the Future – Professor Tony Moore, University of Sussex

Mar 15, 2019 | biology

Original Article Reference

https://doi.org/10.26320/SCIENTIA299

About this episode

Professor Tony Moore and his team at the University of Sussex are investigating the alternative oxidase. This enzyme provides an alternative route for molecular oxygen in the pathways of energy production that are often considered to be wasteful of energy but hold the key to the development of many different novel therapeutic treatments.

 

 

This work is licensed under a Creative Commons Attribution 4.0 International LicenseCreative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium

or format

Adapt: You can change, and build upon the material for any

purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the

license, and indicate if changes were made.

Related episodes

Prof. Andisheh Dadashi | Unraveling the Mysteries of Human Embryo Metabolism: Insights from Computational Models

Prof. Andisheh Dadashi | Unraveling the Mysteries of Human Embryo Metabolism: Insights from Computational Models

Metabolism is the cornerstone of life, orchestrating the myriad chemical reactions that sustain cells, tissues, and organisms. It drives growth, division, energy production, and cellular maintenance. For scientists, understanding metabolism, particularly during the earliest stages of human development, holds the key to uncovering the origins of various diseases and developmental disorders. However, studying metabolism in human embryos presents formidable challenges due to ethical considerations, their tiny size, and the intricate web of metabolic pathways. In a groundbreaking study, researchers Prof. Andisheh Dadashi and Derek Martinez of the University of New Mexico-Valencia leveraged advanced computational models to shed light on the metabolic processes occurring in human embryos during the critical peri-implantation stage.

Dr Hosam Alharbi | Estimating Human Age Using Wide View Digital Dental Images

Dr Hosam Alharbi | Estimating Human Age Using Wide View Digital Dental Images

Dental features have been used to estimate age in humans for centuries and may be used with great accuracy in both living and deceased individuals. However, refinement of these techniques to align with modern clinical practice is ongoing. Dr Hosam Alharbi and colleagues at Qassim University in Saudi Arabia have introduced an amended version of an established technique to assess whether dental imaging systems used in modern clinics are suitable for determining human age.

Dr. Archana Thakur | A Novel Immunotherapy Approach to Treat Solid Tumors

Dr. Archana Thakur | A Novel Immunotherapy Approach to Treat Solid Tumors

Developing therapies to effectively treat cancerous tumors is challenging, due to the hostility of the tumor microenvironment and the potential to unintentionally damage surrounding tissues. Infusions of immune cells can improve immune function and assist the body in fighting disease, although this approach increases the risk of inducing dangerous inflammatory responses. Dr. Archana Thakur and her colleagues at the Universities of Virginia and Pennsylvania have engineered a pioneering immunotherapy system that precisely targets cancerous cells. This new immunotherapy poses minimal risk of adverse reactions, and can be used against a wide range of tumor types.

Dr. Christopher Buck | Expanding Our Knowledge of Viral Evolution

Dr. Christopher Buck | Expanding Our Knowledge of Viral Evolution

Vitamin D has been studied as a treatment for a large number of diseases and conditions, from cancer to autism to COVID-19. However, its mode of action is not completely understood. Professor Ralf Herwig carries out his research at HG Pharma GmbH (Austria) and Ulster University (UK). His vital work explores the role of vitamin D in the body with a view to unlocking its potential as a treatment for a variety of health conditions involving the immune system.

Increase the impact of your research

• Good science communication helps people make informed decisions and motivates them to take appropriate and affirmative action.

• Good science communication encourages everyday people to be scientifically literate so that they can analyse the integrity and legitimacy of information.

• Good science communication encourages people into STEM-related fields of study and employment.

• Good public science communication fosters a community around research that includes both members of the public, policymakers and scientists.

• In a recent survey, 75% of people suggested they would prefer to listen to an interesting story than read it.

Step 1

Upload your science paper

Step 2

SciPod script written

Step 3

Voice audio recorded

Step 4

SciPod published