Advanced Modelling For Better Conservation Of Neotropical Cloud Forests – Dr Eileen Helmer, International Institute of Tropical Forestry in Puerto Rico

Jul 10, 2020 | earth and environment

Original Article Reference

This SciPod is a summary of the paper ‘Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost’, from PLOS One: https://doi.org/10.1371/journal.pone.0213155

About this episode

Climate change and deforestation threaten many valuable ecosystems across the globe. Of these, Neotropical cloud forests and alpine páramo represent biodiversity hotspots, with many species unique to these areas. Conventional climate models use scales too large to adequately assess potential impacts on cloud forests. Through their research, Dr Eileen Helmer from the International Institute of Tropical Forestry in Puerto Rico and her team are overcoming these limitations by producing a robust model that combines relative humidity, frost, and watershed elevation to predict climate change impacts on cloud forests and inform conservation efforts.

 

 

 

This work is licensed under a Creative Commons Attribution 4.0 International LicenseCreative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium or format

Adapt: You can change, and build upon the material for any purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Related episodes

Dr Zsuzsanna Balogh-Brunstad | Getting to the Root of Plant-Fungi Symbiosis

Dr Zsuzsanna Balogh-Brunstad | Getting to the Root of Plant-Fungi Symbiosis

An ancient relationship between plants and fungi could help us improve forestry and agriculture, while also responding to the challenges posed by climate change. These beneficial fungi, along with their bacteria helpers, help plants to grow bigger and healthier, and survive droughts. An international team of researchers has been investigating how these fungi and bacteria increase mineral availability for Scots pine and red pine seedlings through mineral weathering.

Dr Christa Mulder – Understanding How Flowering Plants Respond to Climate Change

Dr Christa Mulder – Understanding How Flowering Plants Respond to Climate Change

A welcome sign of a change in seasons, the year’s first flowers usher in the start of spring. Yet, as the climate warms, some flowers are blooming earlier. Since plants respond to environmental cues, such as temperature, shifts in their annual development has long been considered an effect of climate change. However, significant warming does not always lead to earlier flowering.

The Geological History of Once-Glaciated Regions Affects Current and Future Earth Surface Processes | Dr Alison Anders

The Geological History of Once-Glaciated Regions Affects Current and Future Earth Surface Processes | Dr Alison Anders

Over the past few millions of years, a succession of ice ages has profoundly influenced the geology of Earth’s northerly latitudes. These past events continue to influence our lives today – particularly in the fertile regions we now rely on for agriculture. By tracing the advances and retreats of ice sheets, Dr Alison Anders at the University of Illinois is gaining important new insights into how the landscapes and ecosystems of these regions are intrinsically linked to the geological past. Her team is also revealing how these areas are responding to a changing climate, and to complex human relationships with the land.

Revealing How Ocean Chemistry Controlled Earth’s Ancient Atmosphere and Microbial Evolution | Dr Romain Guilbaud

Revealing How Ocean Chemistry Controlled Earth’s Ancient Atmosphere and Microbial Evolution | Dr Romain Guilbaud

Important clues buried within ancient rocks that were deposited on the ocean floor around one billion of years ago could help scientists understand the evolutionary history of life on Earth. Dr Romain Guilbaud and an international team of researchers from the UK and China analysed the chemical composition of these rocky sediments from the Huainan Basin in North China. Their findings demonstrate how changes in ocean chemistry occurring between one billion and 800 million years ago strongly limited the production of atmospheric oxygen, which is a necessary prerequisite for the planet to host complex life.

Increase the impact of your research

• Good science communication helps people make informed decisions and motivates them to take appropriate and affirmative action.
• Good science communication encourages everyday people to be scientifically literate so that they can analyse the integrity and legitimacy of information.
• Good science communication encourages people into STEM-related fields of study and employment.
• Good public science communication fosters a community around research that includes both members of the public, policymakers and scientists.
• In a recent survey, 75% of people suggested they would prefer to listen to an interesting story than read it.

Step 1 Upload your science paper

Step 2 SciPod script written

Step 3 Voice audio recorded

Step 4 SciPod published