A Greener Future: Leveraging Ecosystem Services in Sustainable Landscape and City Management – Luxembourg Institute of Science and Technology

Jun 1, 2018earth and environment

As global climate change and other major environmental threats advance, scientists are looking for ways to evaluate sustainable solutions for energy, agriculture and city management. Ecosystem services are benefits provided to humans by nature, and over the past two decades researchers have begun refining ways to assess the value of these services compared to human-made options. Dr Benedetto Rugani and his team are developing novel ways to assess ecosystem services and advance the use of nature-based solutions in urban areas.

[lbg_audio2_html5 settings_id=’82’]

You may also like …

Professor Andrew R. Barron | Repurposing Plastic COVID Facemasks to Improve the Steel-Making Process

Since the beginning of the COVID-19 pandemic, billions of plastic facemasks have been used and disposed of, with the majority destined for landfill. Professor Andrew R. Barron and his team at the Energy Safety Research Institute in Swansea, Wales, have developed an innovative method for repurposing these used facemasks. By transforming them into a powdered material that acts as a reducing agent, Professor Barron’s team aim to make the steel-making process more energy-efficient and sustainable.

Dr Peter Melchior | SCARLET: Exploring the Universe in Unprecedented Detail

Wide-area scans of the sky are an important tool for astronomers as they seek to learn more about the universe. However, as the latest observation techniques have become increasingly sensitive, faint objects within these surveys can appear to blend together. Through his research, Dr Peter Melchior at Princeton University presents a computer-based framework for disentangling these blended sources, and for artificially reconstructing the components they contain. Named SCARLET, the technique could soon help astronomers to study the depths of the observable universe in unprecedented levels of detail.

Dr Surjani Wonorahardjo – Dr Suharti Suharti – Dr I Wayan Dasna | Exploring the Ethics and Environmental Impact of Chemistry

From its early days, the field of chemistry has been exploring nature at the molecular level. As such, chemistry is also used to explore natural resources and possible ways of exploiting them. As Earth’s environment is now rapidly deteriorating, chemists need to adapt their practices with the aim of contributing to its protection. Dr Surjani Wonorahardjo, Dr Suharti Suharti and Dr I Wayan Dasna, three researchers in Indonesia, have recently conducted a study exploring the ethical and environmental issues associated with current chemistry practices, in the hope to inspire reflection and positive change in the field.

Dr Helen Greenwood Hansma | Energy: A Clue to the Origins of Life

Energy is vital for life. It allows important functions to occur in living systems, from the molecular level to the scale of the whole organism. Dr Helen Greenwood Hansma, from the University of California in Santa Barbara, believes that the types of energy used in living cells can provide clues to help us understand the origins of life. In her recent research, she explores how mechanical energy could have driven the processes that gave rise to early life in the absence of chemical energy.

Dr Santiago Septien Stringel | Transforming Human Waste into Sustainable Products

Faecal sludge, a material derived from human waste, can be difficult to dispose of and causes significant disease and pollution worldwide. However, it also shows potential as a fuel, fertiliser and even a building material, if properly treated. Dr Santiago [san-tee-ah-go] Septien [sep-tee-uhn] Stringel and his team at the WASH R&D [wash R and D] Centre of the University of KwaZulu-Natal [kwah-zoo-loo-nay-taal], in Durban, South Africa, have been investigating the process for drying faecal sludge, towards developing new ways of transforming it into sustainable products.

Understanding Astrochemistry

Over the past few decades, astronomers have learnt more and more about the planets, moons, and asteroids of our Solar System – but we still have much to learn about the materials they are made from. For hundreds of years, we have used chemistry to study such materials on Earth, but there is no guarantee that they will behave in the same way in space – where they can exist in environments ranging from harsh, airless vacuums, to strange and exotic atmospheres.

Optimising Lubricant Oils to Boost Engine Efficiency | Ken Hope

The engine of a typical passenger vehicle is made up of hundreds of mechanical parts. These parts require lubrication to prevent them from overheating and to keep them working efficiently. Ken Hope and his team at Chevron Phillips Chemical, headquartered in Texas, have analysed the extent to which different types of lubricant oils reduce friction. They then used this data to estimate how an optimised oil mixture can achieve an overall improvement in engine efficiency.

Exploring the Surface Chemistry of Interstellar Dust

Interstellar space may seem like the last place you would look when searching for the chemical origins of life. Yet on the surfaces of tiny dust grains within this vast expanse, complex chemical reactions are continually occurring, which likely played a key role in establishing the rich diversity of complex molecules we observe in the solar system today. In a new study, astrochemists in Spain and Italy, led by Albert Rimola at the Autonomous University of Barcelona, examine how advanced simulation techniques can be used to study these important processes on atomic scales.

Reinventing the Capacitor: The Topological Route of Electricity – Professor Valerii Vinokur | Professor Anna Razumnaya | Professor Igor Lukyanchuk

Modern microelectronics is currently facing a profound challenge. The demand for even smaller and more closely packed electronics has hit a stumbling block: the power emitted in these devices releases more heat than can be efficiently removed. Now, Professors Valerii Vinokur, Anna Razumnaya, and Igor Lukyanchuk propose a solution based on the seemingly counterintuitive phenomenon of ‘negative capacitance’. The effect is surprisingly linked to an intriguing topological structure, which is found time and again across a broad range of scientific fields.

Exploring the Potential of Metatorbernite in Uranium Remediation | Dr Caroline Kirk

Although nuclear power is a clean alternative to fossil fuel combustion, this industry often causes uranium pollution in the local environment. The generation of metatorbernite, a solid material containing uranium, is one promising way to remove dissolved uranium atoms from industrial wastewater. However, before this remediation technology can be widely applied, we need a deeper understanding of the properties of metatorbernite, such as its long-term stability, to ensure that uranium will not be re-released from its structure. Dr Caroline Kirk, Ms Fi MacIver-Jones and their colleagues at the University of Edinburgh have been working to establish the structure and stability of this material, so that it can be applied for uranium remediation in the near future.