Reinventing the Capacitor: The Topological Route of Electricity – Professor Valerii Vinokur | Professor Anna Razumnaya | Professor Igor Lukyanchuk

Apr 7, 2022 | physical sciences

Original Article Reference

This SciPod is a summary of https://doi.org/10.33548/SCIENTIA805

About this episode

Modern microelectronics is currently facing a profound challenge. The demand for even smaller and more closely packed electronics has hit a stumbling block: the power emitted in these devices releases more heat than can be efficiently removed. Now, Professors Valerii Vinokur, Anna Razumnaya, and Igor Lukyanchuk propose a solution based on the seemingly counterintuitive phenomenon of ‘negative capacitance’. The effect is surprisingly linked to an intriguing topological structure, which is found time and again across a broad range of scientific fields.

 
 

 

 

 

This work is licensed under a Creative Commons Attribution 4.0 International LicenseCreative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium or format

Adapt: You can change, and build upon the material for any purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.

More episodes

Dr Tie-Cheng Guo – Professor Li You | Viewing Quantum Phases with ‘Time Order’

Dr Tie-Cheng Guo – Professor Li You | Viewing Quantum Phases with ‘Time Order’

Discovering new phases of matter and classifying such phases are among the most important goals in physics. In a new study, Dr Tie-Cheng Guo and Professor Li You at Tsinghua University in Beijing present a new methodology to discover new quantum phases of matter, using the concept of ‘time order’. Through identifying and defining quantum phases from this perspective, time order could become a new paradigm in physics, helping researchers to gain more insight into quantum many-body systems.

Professor Inge Helland | Reconstructing Parts of Quantum Theory from Two Conceptual Variables

Professor Inge Helland | Reconstructing Parts of Quantum Theory from Two Conceptual Variables

The Hilbert space formulation is a central idea in quantum theory, but the ideas used by physicists to interpret the formulation widely differ. Furthermore, concepts in quantum mechanics are very abstract to those outside the field. Professor Inge Helland from the University of Oslo approaches these problems through what he calls ‘conceptual variables’, which belong to the minds of one or more conscious observers. From this basis, he achieves a new derivation of the Hilbert space formulation, which he hopes will lead to more satisfying studies of the foundations of quantum theory.

Dr Jakub Sitek | Growing Stacks of 2D Materials for Electronic Applications

Dr Jakub Sitek | Growing Stacks of 2D Materials for Electronic Applications

By stacking layers of atom-thick materials on top of each other, researchers are opening up a whole host of exciting new possibilities for technology and scientific research. Particularly interesting properties in these 2D materials could be achieved by stacking three or more of these layers – but so far, the large-scale production of these structures has proven difficult. Using carefully applied techniques, Dr Jakub Sitek and his team at Warsaw University of Technology have made important steps towards overcoming this challenge.

Professor Henning Schmidt | DESIREE: Recreating Interactions Between Ions

Professor Henning Schmidt | DESIREE: Recreating Interactions Between Ions

Interactions between positive and negative ions are important processes in nature. However, there is a lack of experimental facilities designed to study them in detail. This picture could now be changing thanks to DESIREE: a facility where different ion beams can be stored and cooled for extensive periods within separate rings, before colliding with each other. Run by an extensive team of physicists at Stockholm University, the instrument is shedding new light on how ions interact in a wide range of environments – from dynamic stellar atmospheres, to interstellar space.

Increase the impact of your research

• Good science communication helps people make informed decisions and motivates them to take appropriate and affirmative action.
• Good science communication encourages everyday people to be scientifically literate so that they can analyse the integrity and legitimacy of information.
• Good science communication encourages people into STEM-related fields of study and employment.
• Good public science communication fosters a community around research that includes both members of the public, policymakers and scientists.
• In a recent survey, 75% of people suggested they would prefer to listen to an interesting story than read it.

Step 1 Upload your science paper

Step 2 SciPod script written

Step 3 Voice audio recorded

Step 4 SciPod published