Analysing Earth’s Magnetospheric System A Web of Interconnections – Dr Joseph E. Borovsky, Space Science Institute

Mar 29, 2019 | earth and environment, physical sciences

Original Article Reference

https://doi.org/10.26320/SCIENTIA302

About this episode

The behaviours of physical systems are often decided by complex webs of connections between properties, where a small change in just one variable could cause changes in every other one. Dr Joe Borovsky at the Space Science Institute of Boulder, Colorado, and his colleagues have dedicated their research to understanding one such web: the complex relationship between the solar wind and Earth’s magnetosphere.
 

 

This work is licensed under a Creative Commons Attribution 4.0 International LicenseCreative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium

or format

Adapt: You can change, and build upon the material for any

purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the

license, and indicate if changes were made.

Related episodes

Dr. Arthur Snow | From Firefighting Foams to Molecular Mysteries: A Surfactant’s Unexpected Journey

Dr. Arthur Snow | From Firefighting Foams to Molecular Mysteries: A Surfactant’s Unexpected Journey

Scientific discovery often unfolds in unexpected ways. What begins as a search for solutions to real-world challenges can lead researchers into unexplored scientific territory, where unconventional ideas emerge and spark debate. This dynamic was at the heart of research by Dr. Arthur W. Snow and Dr. Ramagopal Ananth in the Chemistry Division of the US Naval Research Laboratory. Their study aimed to address a pressing need: replacing fluorocarbon surfactants in firefighting foams. What they discovered would take them beyond firefighting applications and into fundamental questions about the nature of water itself.

Professor Jeremy Maurer | Building a seismic timeline of the Nippes earthquake

Professor Jeremy Maurer | Building a seismic timeline of the Nippes earthquake

Sitting directly over a complex network of fault lines, Haiti is one of the most earthquake-prone nations on Earth. In 2021, the Nippes earthquake became the latest to devastate the country, and today, researchers are still piecing together the timeline of seismic events which unfolded during the earthquake. Through their research, Professor Jeremy Maurer and colleagues at Missouri University of Science and Technology have described how the Nippes earthquake originated, shifted, and ruptured a major fault line, triggering numerous ‘afterslip’ events in the following days.

Pollinator Peril: How Common Agricultural Cocktails Harm Honeybees

Pollinator Peril: How Common Agricultural Cocktails Harm Honeybees

Pollinators, including honey bees, wild bees, butterflies and many other insects, are some of the most important creatures on our planet. By pollinating plants, both wild and cultivated, they have an essential role in maintaining wider ecosystems and ensuring our food security. However, we have come to take them for granted, and don’t fully appreciate their function in ensuring our ongoing survival. Insects are declining at a truly alarming rate. Among other factors human activities such as industrial farming and corresponding insecticide and fungicide use over large areas of land to protect food crops against pests and disease are considered to be major contributors. Many different pesticides have also been detected in honeybee colonies. Scientists are attempting to uncover the specific factors involved in insect decline, before it’s too late. Recent research by Sarah Manzer and colleagues in the research groups of Prof. Ricarda Scheiner and Prof. Ingolf Steffan-Dewenter at the Julius Maximilians Universität Würzburg in Germany has shed new light on a potential culprit: a combination of insecticides and fungicides commonly used in agriculture.

Prof. Dr. Ralf Klessen | Reviewing the formation of the universe’s first stars

Prof. Dr. Ralf Klessen | Reviewing the formation of the universe’s first stars

Before the universe was illuminated by stars, most of its observable matter existed in a roughly even distribution of hydrogen and helium. As these materials collapsed under their own gravity, they would have heated up, initially preventing them from collapsing further to densities high enough for stars to form. As part of a new review, Prof. Dr. Ralf Klessen and Prof. Dr. Simon Glover at Heidelberg University investigate the chemical mechanisms which enabled this primordial gas to cool and fragment to form the universe’s first generation of stars.

Increase the impact of your research

• Good science communication helps people make informed decisions and motivates them to take appropriate and affirmative action.

• Good science communication encourages everyday people to be scientifically literate so that they can analyse the integrity and legitimacy of information.

• Good science communication encourages people into STEM-related fields of study and employment.

• Good public science communication fosters a community around research that includes both members of the public, policymakers and scientists.

• In a recent survey, 75% of people suggested they would prefer to listen to an interesting story than read it.

Step 1

Upload your science paper

Step 2

SciPod script written

Step 3

Voice audio recorded

Step 4

SciPod published