Collaborating to Study Interfaces in Miniaturised Materials – SFB 1083

Nov 16, 2018 | engineering and tech, physical sciences

Original Article Reference

https://doi.org/10.33548/SCIENTIA452

About this episode

Creating technologies from multiple materials with different physical properties can be hugely beneficial, but the process doesn’t come without its challenges. As we fabricate new devices, an understanding of the physics occurring at the interfaces where different miniaturised materials meet is now crucial, but seriously lacking. Based at Philipps-Universität Marburg, the Collaborative Research Centre SFB 1083 is a wide collaboration of researchers at institutions across Germany, who are tackling the diverse range of problems involved with these interfaces.
 

 

This work is licensed under a Creative Commons Attribution 4.0 International LicenseCreative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium

or format

Adapt: You can change, and build upon the material for any

purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the

license, and indicate if changes were made.

Related episodes

Dr. Kai Hilpert | AI-Powered Prediction of Antimicrobial Peptides in Human Serum: A New Strategy Against Resistant Bacteria

Dr. Kai Hilpert | AI-Powered Prediction of Antimicrobial Peptides in Human Serum: A New Strategy Against Resistant Bacteria

In the 20th century, antibiotics transformed medicine. Infections that once killed millions could be cured with a pill or injection. Surgeries became safer, cancer treatments more effective, and advanced medical interventions, such as organ transplants, became possible, all because doctors could rely on these drugs to control infections. Unfortunately, today, that foundation is crumbling. Bacteria are evolving faster than medicine can keep up. Common antibiotics are failing, and infections that were once easily treatable are becoming deadly again. In 2019 alone, antimicrobial resistance was linked to nearly five million deaths worldwide, making it deadlier than HIV or malaria. The economic cost is equally staggering: the World Bank warns of trillions lost in global productivity and millions pushed into poverty if nothing changes. This crisis, caused by antimicrobial resistance, has been described as a “silent pandemic.” Unlike a sudden outbreak, it spreads quietly, making routine medical care slightly more dangerous each year. Yet amid this grim outlook, new research is opening a window of hope. At the forefront of new innovations in this area are Dr. Kai Hilpert of City St George’s, University of London, and his colleagues, who are pioneering an approach that combines biology, chemistry, and artificial intelligence to reinvent how we discover infection-fighting medicines. Their work has been recognised with a prestigious award from the UK’s Biotechnology and Biological Sciences Research Council, BBSRC.

Dr Ivo Rietveld | Predicting Polymorphs: How Collaborative Science is Shaping Safer Medicines and Better Materials

Dr Ivo Rietveld | Predicting Polymorphs: How Collaborative Science is Shaping Safer Medicines and Better Materials

The way molecules arrange themselves into crystals can affect the stability, safety, and effectiveness of medicines and advanced materials. Dr Ivo Rietveld at the University of Rouen Normandy and his collaborators are developing new benchmark data that help scientists to accurately predict the stability of crystal structures of molecules, helping to reduce risks in drug development and enabling the design of better materials.

Ahmed Alhindi – Dr. Meng-Sang Chew | Improving compliant mechanism designs with fuzzy logic

Ahmed Alhindi – Dr. Meng-Sang Chew | Improving compliant mechanism designs with fuzzy logic

When they design mechanical systems, engineers first need to understand how they will behave using mathematical modelling tools that can simulate their movements. In recent years, they have increasingly explored the possibilities of ‘compliant’ mechanisms: highly flexible systems which are now being applied across numerous leading fields of technology. However, because their motions are often incredibly complex, engineers have so far found it difficult to recreate their behaviours in the mathematical tools needed to design them. Because they involve complex, nonlinear behaviour, designing compliant mechanisms has posed a long-standing challenge for engineers. While several advanced synthesis methods are now available, they’re often computationally intensive and can’t readily cope with the inevitable uncertainties in a system’s operating variables. In their latest research, Ahmed Alhindi and Dr. Meng-Sang Chew at Lehigh University, Pennsylvania, propose a novel approach that directly accounts for uncertainty in the design process. By reformulating widely used equations, their ‘dimensional synthesis’ method offers a streamlined yet powerful way to design compliant mechanisms under real-world, uncertain conditions.

Dr. Kishor Shrestha | Rethinking the costs of highway rest areas

Dr. Kishor Shrestha | Rethinking the costs of highway rest areas

Operating and maintaining highway rest areas across the United States has long posed a costly challenge for state transportation departments, especially amid tightening budgets and rising demand. In a new study, Dr. Kishor Shrestha, associate professor at Washington State University finds that one outsourcing method known as method-based contracting is significantly more cost-effective than its two main alternatives. The results offer transport officials a clearer path forward for running rest areas more efficiently, and could help to preventing costly, potentially dangerous closures in the future.

Increase the impact of your research

• Good science communication helps people make informed decisions and motivates them to take appropriate and affirmative action.

• Good science communication encourages everyday people to be scientifically literate so that they can analyse the integrity and legitimacy of information.

• Good science communication encourages people into STEM-related fields of study and employment.

• Good public science communication fosters a community around research that includes both members of the public, policymakers and scientists.

• In a recent survey, 75% of people suggested they would prefer to listen to an interesting story than read it.

Step 1

Upload your science paper

Step 2

SciPod script written

Step 3

Voice audio recorded

Step 4

SciPod published